A Generative Block-Diagonal Model for Clustering

نویسندگان

  • Junxiang Chen
  • Jennifer G. Dy
چکیده

Probabilistic mixture models are among the most important clustering methods. These models assume that the feature vectors of the samples can be described by a mixture of several components. Each of these components follows a distribution of a certain form. In recent years, there has been an increasing amount of interest and work in similarity-matrix-based methods. Rather than considering the feature vectors, these methods learn patterns by observing the similarity matrix that describes the pairwise relative similarity between each pair of samples. However, there are limited works in probabilistic mixture model for clustering with input data in the form of a similarity matrix. Observing this, we propose a generative model for clustering that finds the block-diagonal structure of the similarity matrix to ensure that the samples within the same cluster (diagonal block) are similar while the samples from different clusters (off-diagonal block) are less similar. In this model, we assume the elements in the similarity matrix follow one of beta distributions, depending on whether the element belongs to one of the diagonal blocks or to off-diagonal blocks. The assignment of the element to a block is determined by the cluster indicators that follow categorical distributions. Experiments on both synthetic and real data show that the performance of the proposed method is comparable to the state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Diagonal Majorization on $C_{0}$

Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.

متن کامل

Fast Subspace Clustering Based on the Kronecker Product

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace gener...

متن کامل

Community Detection with the Non-Backtracking Operator

Community detection consists in identification of groups of similar items within a population. In the context of online social networks, it is a useful primitive for recommending either contacts or news items to users. We will consider a particular generative probabilistic model for the observations, namely the so-called stochastic block model and prove that the non-backtracking operator provid...

متن کامل

ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION

The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...

متن کامل

Upper and lower bounds for numerical radii of block shifts

For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016